File:Ice Age Temperature Rev.png

From Global Warming Art

Description

Expanded record of temperature change since the end of the last glacial period.
Extended record of climate change during the last 5 million years.

This figure shows the Antarctic temperature changes during the last several glacial/interglacial cycles of the present ice age and a comparison to changes in global ice volume. The present day is on the right.

The first two curves shows local changes in temperature at two sites in Antarctica as derived from deuterium isotopic measurements (δD) on ice cores (EPICA Community Members 2004, Petit et al. 1999). The final plot shows a reconstruction of global ice volume based on δ18O measurements on benthic foraminifera from a composite of globally distributed sediment cores and is scaled to match the scale of fluctuations in Antarctic temperature (Lisiecki and Raymo 2005). Note that changes in global ice volume and changes in Antarctic temperature are highly correlated, so one is a good estimate of the other, but differences in the sediment record do no necessarily reflect differences in paleotemperature. Horizontal lines indicate modern temperatures and ice volume. Differences in the alignment of various features reflect dating uncertainty and do not indicate different timing at different sites.

The Antarctic temperature records indicate that the present interglacial is relatively cool compared to previous interglacials, at least at these sites. It is believed that the interglacials themselves are triggered by changes in Earth's orbit known as Milankovitch cycles and that the variations in individual interglacials can be partially explained by differences within this process. For example, Overpeck et al. (2006) argues that the previous interglacial was warmer because of increased solar radiation at high latitudes. The Liesecki & Raymo (2005) sediment reconstruction does not indicate significant differences between modern ice volume and previous interglacials, though some other studies do report slightly lower ice volumes / higher sea levels during the 120 ka and 400 ka interglacials (Karner et al. 2001, Hearty and Kaufman 2000).

It should be noted that temperature changes at the typical equatorial site are believed to have been significantly less than the changes observed at high latitude.


Temperature Record Series
This figure is part of series of plots showing changes in Earth's temperature over time.
Time Period: 25 yrs | 150 yrs | 1 kyr | 2 kyr | 12 kyr | 450 kyr | 5 Myr | 65 Myr | 500 Myr
See also: Future predicted changes | Map of recent warming | Temperature change category

Copyright

This figure was produced by Robert A. Rohde from publicly available data.


float
Global Warming Art License

This image is an original work created for Global Warming Art by Robert A. Rohde.

It is intended to be widely used, but the terms of use vary depending on the application.
Please select the category below that best matches your intended use.


It is also requested, but not required, that authors send Global Warming Art a copy of any significant publications that include the use of this image. Those interested in commercial and/or higher quality reproduction may also wish to refer to the information for professional republishers.


References

  • [abstract] [full text] [DOI] EPICA community members (2004). "Eight glacial cycles from an Antarctic ice core". Nature 429 (6992): 623-628. 
  • [abstract] Hearty, P.J. and Kaufmann, D.S. (2000). "Whole-rock aminostratigraphy and Quaternary sea-level history of the Bahamas". Quaternary Research 54: 63-173. 
  • [abstract] [full text] [DOI] Karner, D.B., J. Levine, B.P. Medeiros, and R.A. Muller (2002). "Constructing a Stacked Benthic δ18O Record". Paleoceanography 17 (3). 
  • [abstract] [full text] [DOI] Lisiecki, L. E., and M. E. Raymo (2005). "A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records". Paleoceanography 20: PA1003. 
  • [abstract] [DOI] Overpeck, Jonathan T., Bette L. Otto-Bliesner, Gifford H. Miller, Daniel R. Muhs, Richard B. Alley, Jeffrey T. Kiehl (2006). "Paleoclimatic Evidence for Future Ice-Sheet Instability and Rapid Sea-Level Rise". Science 311 (5768): 1747-1750. 
  • [abstract] [DOI] Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.M., Basile I., Bender M., Chappellaz J., Davis J., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V., Lorius C., Pépin L., Ritz C., Saltzman E., Stievenard M. (1999). "Climate and Atmospheric History of the Past 420,000 years from the Vostok Ice Core, Antarctica". Nature 399: 429-436. 

There are no pages that link to this file.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current02:57, 20 February 2006Thumbnail for version as of 02:57, 20 February 2006574×379 (26 KB)Robert A. Rohde (Talk | contribs)